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1. Binaural hearing phenomena

2. Newly developed auditory displays
that exploit spatial hearing for improving

-speech intelligibility
-alarm intelligibility

In aviation applications



Physical characteristics of sound and perceived attributes

* Frequency > (perceived pitch)
* Intensity > (loudness)
« Spectral content > (timbre)

 FIS, plus binaural differences —— (localization)



Physical characteristics of sound and perceived attributes

* Frequency > (perceived pitch)
* Intensity > (loudness)
« Spectral content > (timbre)

 FIS, plus binaural differences —— (localization)

** All characteristics are important in the identification and
discrimination of auditory signals and for speech intelligibility

IN communication contexts



Two important functions of the binaural hearing system
* Localization
(lateral and 3-dimensional)
* Binaural release from masking:

Echo supression, room perception
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Acoustic signal-driven ——»
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Lateral localization of auditory images

DISTANT SOURCE

“Duplex” theory of localization

* ILD (interaural level difference)

« ITD (interaural time difference)




Lateral spatial image shift

- ILD (interaural level difference)
caused by head shadow of
wavelengths > 1.5 kHz
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Lateral image shift

* ITD (interaural time difference)

0o -

04 -

— MEASURED VALUES -

INTERAURAL TIME DIFFERENCE (MSEC)

0.3
(5 SUBJECTS)

0.2 - — — VALUES COMPUTED
FROM SPHERE

0 (WOODWORTH)

0 & NN TN T TN T T N N 3

0° 209 40° B80° 80° 100° 120> 440° 160° 180°




Log Magnitude (dB)
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Vibration source

Sound sources

(internal, external)
1 can be ‘felt’
Ground, Structure response and ‘seen’ as
V1 m well as heard
! ‘/bf T
Airborne \_Nalls, Chairs, \_Nalls,
sound Windows, Tables, Windows,
\ objects floor plants
NI ) . | : Head-
| ' mounted
. | hearing feeling seeing visual
l l l display
Expectation

Inter-modal coordination
Identification
Experience-adaptation

Response:
qualitative assessment
Performance metric




Applications of spatial sound for improving
intelligibility in auditory displays



Using binaural hearing advantage for separating multiple
auditory “streams” (simultaneous sources)

Proposed 3-D audio communication system

[ —— ]

Background noise reduced
< via on-the-ear, active noise
cancellation headsets.

Each communication r,\j} [ Nnrrr:nal cm:nmun!catinn still
channel is SZEERNg) possible without intercom

spatially separated.

User can use
selective attention * Improved intelligibility
to switch between

signals, as . _
in normal hearing. Less fatigue




3-D communication system patented, developed for NASA-KSC
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Speech Intelligibility advantage compared to one-ear listening
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Hearing loss for target users: 64 active commercial airline pilots
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Audiogram data summary for 20 active commercial pilots
(age range 35-64; not corrected for presbycusis)
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Use of auditory icons (Al) and left-right
spatialization for information redundancy,
situational awareness of actions of crew
(CRM) and haptic feedback substitution
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Head up auditory display for TCAS

3-D audio alert
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Application of 3-D audio head-up display for Traffic Collision
Avoidance System (TCAS II) investigated.

Target acquisition times can decrease from 0.5 — 2.2 sec.

3-D AUDIO WARNING FOR TCAS ADVISORIES
HEAD-UP AUDITORY DISPLAY
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Mean target acquisition
times (4.7 vs. 2.5 s) and
standard deviations for first
TCAS experiment.

The 3-D audio cues were exaggerated in
azimuth relative to the visual target, and no
elevation cues were supplied.

Monotic Audio 3-D Audio
No Map Display No Map Display

Mean target acquisition
times (2.63 vs. 2.13 s) and
standard deviations for

second TCAS experiment.
The 3-D audio cues were not exaggerated,
and there were three categories of
elevation cues.

head-down head-up
map display 3-D audio
display



Head-up auditory display with head-up visual display




3-D AUDIO GATE AND
TAXIWAY IDENT FOR
LOW-VIS CONDITIONS
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Spatially-modulated auditory alerts



In an auditory display, how to insure
that an alarm is audible?

-“Common sense”
engineering approach:
make the alarm a /ot
louder than the
background noise for
wide-area coverage

Fire alarm and horn from ca. 1933



In an auditory display, how to insure
that an alarm is audible?

N0

-ISO 7731 ("Danger signals 8|
for work places-Auditory g -
danger signals”) specifies ! bt |

signal to be >= 13 dB
re masked threshold in a |
1/3 octave band (0.3-3.0 kHz) e | 1 |
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-Recipe for “startle effect”, high overall SPLs,

and potentially low performance in a high-stress
environment



Current approach

-lmprove detection of an alarm (signal) against
ambient sound (noise) using signal processing
techniques other than level increase

Requirement / Caveat

-Technique should apply to currently-used alarms
(to avoid “relearning” semantic content of new
auditory signals).

Technique

-Three methods addressed in patent application
(pending) for accomplishing this.



Three techniques for improving detection of an existing alarm:
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1. Spectral infusion (inspired by violin “pizzicato-arco”)
(to be covered in a future paper)



Three techniques for improving detection of an existing alarm:
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(2-10 Hz modulation)

2. Spatial modulation
(inspired by annoying insects)
within the rate of

binaural sluggishness (to
emphasize motion detection
over localization)

Topic of this presentation




Three techniques for improving detection of an existing alarm:
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Main experimental goals

-Determine effect of spatial modulation rate
(using HRTF-based spatial panning technique)
for signal detection

-Determine if results obtained from
virtual presentation of signal & noise sources
differs from using real loudspeakers



Experiment design

-Six conditions for planned comparisons,
varying sound source for noise and alert,
and level of spatial modulation

-Fourteen subjects Block | Nofse Alan Spatal
type SOUrce SOuUrce Modulation
(Hz)
. . . . 1 Loudspeaker | Loudspeaker 1]
-Wlthln-SUbJeCt deSIQn 2 Loudspeaker | Headphone 1.66A
3 Loudspeaker | Headphone 3.33
o . 4 Heacphone Headphone 0
-Each condition run twice 5 treasonons | Tesaproe T 156
(12 blocks / subject) 6 [Headphone | Headphone | 3.33




Main Independent variables

- Spatial modulation (“jitter”) rate of target stimulus:
0,1.6, or 3.3 Hz

- Virtual versus real loudspeaker simulation of background
noise and alert

- Headphone versus loudspeaker presentation of alert

Common dependent variable

- 70.7 % threshold level for detection of the alert

(measured via 2-AFC, 1 up- 2 down adaptive staircase
within 1 dB tolerance)



Alarm (basic stimulus)

/37-300 alarm: Two successive square waves
(preceding verbal “wind sheer” alert)

200 Hz

764 Hz

300 ms
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Results (1)

Headphone with jittered signal has 13.4 dB advantage over
monaural loudspeaker (existing condition on aircraft),
partly due to attenuation of noise by headphone
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Results (2)

Headphone with jittered signal has significant (p <.000)
/.8 dB advantage over headphone without jittered signal.
No significant difference between 1.6 and 3.3 Hz modulation.
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Conclusions

A new approach to designing alerts for auditory
displays in high-stress interfaces: use of
spatial modulation for improved detection.

Headphones + spatial modulation lower
threshold by 13.4 dB.

Spatial modulation lowers threshold by 7.8 dB.

5 dB is due to HRTF interaural level difference if
instantaneous (peak) level differences are assumed.
This amount is reduced as a function of longer
temporal integration periods. Remaining advantage
Is due to time varying interaural cross-correlation.



- IMMEDIATE SITUATIONAL AWARENESS
(WITH HEADS-UP ADVANTAGE)

BINAURAL
LOCALIZATION - ALTERNATIVE or REDUNDANT DISPLAY for

VISUALLY-ACQUIRED INFORMATION

« INTELLIGIBILITY IMPROVEMENT
Binaural release from masking

THE "COCKTAIL

PARTY" EFFECT
* DISCRIMINATION and SELECTIVE
+ ATTENTION IMPROVEMENT

ACTIVE NOISE
CANCELLATION

HEARING CONSERVATION

Benefits: increased
aviation safety & efficiency




